多线程

简述线程、程序、进程的基本概念。以及他们之间关系是什么?

线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线 程。与进程不同的是同类的多个线程共享同一块内存空间和一组系统资源,所以系统在产生一个线程, 或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。

程序是含有指令和数据的文件,被存储在磁盘或其他的数据存储设备中,也就是说程序是静态的代码。

进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是 一个进程从创建,运行到消亡的过程。简单来说,一个进程就是一个执行中的程序,它在计算机中一个 指令接着一个指令地执行着,同时,每个进程还占有某些系统资源如 CPU 时间,内存空间,文件,输入输出设备的使用权等等。换句话说,当程序在执行时,将会被操作系统载入内存中。 线程是进程划分成的更小的运行单位。线程和进程最大的不同在于基本上各进程是独立的,而各线程则不一定,因为同 一进程中的线程极有可能会相互影响。从另一角度来说,进程属于操作系统的范畴,主要是同一段时间 内,可以同时执行一个以上的程序,而线程则是在同一程序内几乎同时执行一个以上的程序段。

从 JVM ⻆度说进程和线程之间的关系

图解进程和线程的关系

image-20210504203027828

从上图可以看出:⼀个进程中可以有多个线程,多个线程共享进程的堆和⽅法区 (JDK1.8 之后的元空间)资源,但是每个线程有⾃⼰的程序计数器、虚拟机栈 和 本地⽅法栈。

总结: 线程 是 进程 划分成的更⼩的运⾏单位。线程和进程最⼤的不同在于基本上各进程是独⽴的,

⽽各线程则不⼀定,因为同⼀进程中的线程极有可能会相互影响。线程执⾏开销⼩,但不利于资源的管 理和保护;⽽进程正相反

下⾯是该知识点的扩展内容!

下⾯来思考这样⼀个问题:为什么程序计数器、虚拟机栈和本地⽅法栈是线程私有的呢?为什么堆和⽅ 法区是线程共享的呢?

程序计数器为什么是私有的?

程序计数器主要有下⾯两个作⽤:

  1. 字节码解释器通过改变程序计数器来依次读取指令,从⽽实现代码的流程控制,如:顺序执⾏、 选择、循环、异常处理。

  2. 在多线程的情况下,程序计数器⽤于记录当前线程执⾏的位置,从⽽当线程被切换回来的时候能 够知道该线程上次运⾏到哪⼉了。

需要注意的是,如果执⾏的是 native ⽅法,那么程序计数器记录的是 undefined 地址,只有执⾏的是 Java 代码时程序计数器记录的才是下⼀条指令的地址。

所以,程序计数器私有主要是为了线程切换后能恢复到正确的执⾏位置。

虚拟机栈和本地⽅法栈为什么是私有的?

  • 虚拟机栈: 每个 Java ⽅法在执⾏的同时会创建⼀个栈帧⽤于存储局部变量表、操作数栈、常量池引⽤等信息。从⽅法调⽤直⾄执⾏完成的过程,就对应着⼀个栈帧在 Java 虚拟机栈中⼊栈和出栈的过程。
  • 本地⽅法栈: 和虚拟机栈所发挥的作⽤⾮常相似,区别是: 虚拟机栈为虚拟机执⾏ Java ⽅法(也就是字节码)服务,⽽本地⽅法栈则为虚拟机使⽤到的 Native ⽅法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合⼆为⼀。

所以,为了保证线程中的局部变量不被别的线程访问到,虚拟机栈和本地⽅法栈是线程私有的。

⼀句话简单了解堆和⽅法区

堆和⽅法区是所有线程共享的资源,其中堆是进程中最⼤的⼀块内存,主要⽤于存放新创建的对象 (所有对象都在这⾥分配内存),⽅法区主要⽤于存放已被加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。

说说并发与并⾏的区别?

  • 并发: 同⼀时间段,多个任务都在执⾏ (单位时间内不⼀定同时执⾏);
  • 并⾏: 单位时间内,多个任务同时执⾏。

为什么要使⽤多线程呢?

先从总体上来说:

  • 从计算机底层来说: 线程可以⽐作是轻量级的进程,是程序执⾏的最⼩单位,线程间的切换和调度的成本远远⼩于进程。另外,多核 CPU 时代意味着多个线程可以同时运⾏,这减少了线程上下⽂切换的开销。
  • 从当代互联⽹发展趋势来说: 现在的系统动不动就要求百万级甚⾄千万级的并发量,⽽多线程并发编程正是开发⾼并发系统的基础,利⽤好多线程机制可以⼤⼤提⾼系统整体的并发能⼒以及 性能。

再深⼊到计算机底层来探讨:

  • 单核时代: 在单核时代多线程主要是为了提⾼ CPU 和 IO 设备的综合利⽤率。举个例⼦:当只有⼀个线程的时候会导致 CPU 计算时,IO 设备空闲;进⾏ IO 操作时,CPU 空闲。我们可以简单地说这两者的利⽤率⽬前都是 50%左右。但是当有两个线程的时候就不⼀样了,当⼀个线程执⾏ CPU 计算时,另外⼀个线程可以进⾏ IO 操作,这样两个的利⽤率就可以在理想情况下达到100%了。
  • 多核时代: 多核时代多线程主要是为了提⾼ CPU 利⽤率。举个例⼦:假如我们要计算⼀个复杂的任务,我们只⽤⼀个线程的话,CPU 只会⼀个 CPU 核⼼被利⽤到,⽽创建多个线程就可以让多个 CPU 核⼼被利⽤到,这样就提⾼了 CPU 的利⽤率。

使⽤多线程可能带来什么问题?

并发编程的⽬的就是为了能提⾼程序的执⾏效率提⾼程序运⾏速度,但是并发编程并不总是能提⾼程序 运⾏速度的,⽽且并发编程可能会遇到很多问题,⽐如:内存泄漏、上下⽂切换、死锁还有受限于硬件 和软件的资源闲置问题。

线程有⽣命周期和基本状态?

Java 线程在运行的生命周期中的指定时刻只可能处于下面6种不同状态的其中一个状态(图源《Java 并发编程艺术》.4节)。

image-20210502145153080

线程在生命周期中并不是固定处于某一个状态而是随着代码的执行在不同状态之间切换。Java 线程状态变迁如下图所示(图源《Java 并发编程艺术》.4节):

image-20210502145207899

操作系统隐藏 Java虚拟机(JVM)中的 RUNNABLE 和 RUNNING 状态,它只能看到 RUNNABLE 状态

(图源:HowToDoInJava:Java Thread Life Cycle and Thread States),所以 Java 系统一般将这两个状态统称为 RUNNABLE(运行中) 状态 。

操作系统隐藏 Java虚拟机(JVM)中的 RUNNABLE 和 RUNNING 状态,它只能看到 RUNNABLE 状态(图源:HowToDoInJava:Java Thread Life Cycle and Thread States),所以 Java 系统一般将这两个状态统称为 RUNNABLE(运行中) 状态 。

image-20210502145234721

当线程执行 wait() 方法之后,线程进入 WAITING(等待)状态。进入等待状态的线程需要依靠其他线程的通知才能够返回到运行状态,而 TIME_WAITING(超时等待) 状态相当于在等待状态的基础上增加了超时限制,比如通过 sleep(long millis) 方法或 wait(long millis) 方法可以将 Java 线程置于 TIMED WAITING 状态。当超时时间到达后 Java 线程将会返回到 RUNNABLE 状态。当线程调用同步方法时,在没有获取到锁的情况下,线程将会进入到 BLOCKED(阻塞) 状态。线程在执行 Runnable 的run() 方法之后将会进入到 TERMINATED(终止) 状态。

什么是上下⽂切换?

多线程编程中⼀般线程的个数都⼤于 CPU 核⼼的个数,⽽⼀个 CPU 核⼼在任意时刻只能被⼀个线程使

⽤,为了让这些线程都能得到有效执⾏,CPU 采取的策略是为每个线程分配时间⽚并轮转的形式。当⼀个线程的时间⽚⽤完的时候就会重新处于就绪状态让给其他线程使⽤,这个过程就属于⼀次上下⽂切换。

概括来说就是:当前任务在执⾏完 CPU 时间⽚切换到另⼀个任务之前会先保存⾃⼰的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是⼀次上下⽂切换。

上下⽂切换通常是计算密集型的。也就是说,它需要相当可观的处理器时间,在每秒⼏⼗上百次的切换 中,每次切换都需要纳秒量级的时间。所以,上下⽂切换对系统来说意味着消耗⼤量的 CPU 时间,事实上,可能是操作系统中时间消耗最⼤的操作。

Linux 相⽐与其他操作系统(包括其他类 Unix 系统)有很多的优点,其中有⼀项就是,其上下⽂切换和模式切换的时间消耗⾮常少。

什么是线程死锁?如何避免死锁?

认识线程死锁

线程死锁描述的是这样⼀种情况:多个线程同时被阻塞,它们中的⼀个或者全部都在等待某个资源被释 放。由于线程被⽆限期地阻塞,因此程序不可能正常终⽌。

如下图所示,线程 A 持有资源 2,线程 B 持有资源 1,他们同时都想申请对⽅的资源,所以这两个线程就会互相等待⽽进⼊死锁状态。

image-20210504203359478

学过操作系统的朋友都知道产⽣死锁必须具备以下四个条件:

  1. 互斥条件:该资源任意⼀个时刻只由⼀个线程占⽤。

  2. 请求与保持条件:⼀个进程因请求资源⽽阻塞时,对已获得的资源保持不放。

  3. 不剥夺条件:线程已获得的资源在末使⽤完之前不能被其他线程强⾏剥夺,只有⾃⼰使⽤完毕后 才释放资源。

  4. 循环等待条件:若⼲进程之间形成⼀种头尾相接的循环等待资源关系。

如何避免线程死锁? 我上⾯说了产⽣死锁的四个必要条件,为了避免死锁,我们只要破坏产⽣死锁的四个条件中的其中⼀个 就可以了。现在我们来挨个分析⼀下: 1.破坏互斥条件 :这个条件我们没有办法破坏,因为我们⽤锁本来就是想让他们互斥的(临界资源需要互斥访问)。 2.破坏请求与保持条件 :⼀次性申请所有的资源。 3.破坏不剥夺条件 :占⽤部分资源的线程进⼀步申请其他资源时,如果申请不到,可以主动释放它占有的资源。 4.破坏循环等待条件 :靠按序申请资源来预防。按某⼀顺序申请资源,释放资源则反序释放。破坏循环等待条件。

Java中实现多线程有几种方法

继承Thread类;

实现Runnable接口;

实现Callable接口通过FutureTask包装器来创建Thread线程;

使用ExecutorService、Callable、Future实现有返回结果的多线程(也就是使用了ExecutorService来管理前面的三种方式)。

实现Runnable接口和Callable接口的区别

如果想让线程池执行任务的话需要实现的Runnable接口(⾃Java 1.0以来⼀直存在)或Callable接口(仅在Java 1.5中引⼊)。 Runnable接口或Callable接口实现类都可以被ThreadPoolExecutor或ScheduledThreadPoolExecutor执行。两者的区别在于Runnable 接口不会返回结果但是 Callable 接口可以返回结果。

备注: 工具类Executors 可以实现Runnable 对象和Callable 对象之间的相互转换。( Executors.callable(Runnable task) 或Executors.callable(Runnable task,Object resule)

如何停止一个正在运行的线程

1、使用退出标志,使线程正常退出,也就是当run方法完成后线程终止。

2、使用stop方法强行终止,但是不推荐这个方法,因为stop和suspend及resume一样都是过期作废的 方法。

3、使用interrupt方法中断线程。

notify()和notifyAll()有什么区别?

notify可能会导致死锁,而notifyAll则不会

任何时候只有一个线程可以获得锁,也就是说只有一个线程可以运行synchronized 中的代码使用notifyall,可以唤醒

所有处于wait状态的线程,使其重新进入锁的争夺队列中,而notify只能唤醒一个。

wait() 应配合while循环使用,不应使用if,务必在wait()调用前后都检查条件,如果不满足,必须调用

notify()唤醒另外的线程来处理,自己继续wait()直至条件满足再往下执行。

notify() 是对notifyAll()的一个优化,但它有很精确的应用场景,并且要求正确使用。不然可能导致死锁。正确的场景应该是 WaitSet中等待的是相同的条件,唤醒任一个都能正确处理接下来的事项,如果唤醒的线程无法正确处理,务必确保继续notify()下一个线程,并且自身需要重新回到WaitSet中.

sleep()和wait() 有什么区别?

对于sleep()方法,我们首先要知道该方法是属于Thread类中的。而wait()方法,则是属于Object类中 的。

sleep()方法导致了程序暂停执行指定的时间,让出cpu该其他线程,但是他的监控状态依然保持者,当 指定的时间到了又会自动恢复运行状态。在调用sleep()方法的过程中,线程不会释放对象锁。

当调用wait()方法的时候,线程会放弃对象锁,进入等待此对象的等待锁定池,只有针对此对象调用notify()方法后本线程才进入对象锁定池准备,获取对象锁进入运行状态。

  • Wait 通常被⽤于线程间交互/通信,sleep 通常被⽤于暂停执⾏。
  • wait() ⽅法被调⽤后,线程不会⾃动苏醒,需要别的线程调⽤同⼀个对象上的 notify() 或者notifyAll() ⽅法。sleep() ⽅法执⾏完成后,线程会⾃动苏醒。或者可以使⽤ wait(long timeout)超时后线程会⾃动苏醒。

volatile 是什么?可以保证有序性吗?

一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语 义:

1) 保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他 线程来说是立即可见的,volatile关键字会强制将修改的值立即写入主存。

2) 禁止进行指令重排序。volatile 不是原子性操作什么叫保证部分有序性?

当程序执行到volatile变量的读操作或者写操作时,在其前面的操作的更改肯定全部已经进行,且结果 已经对后面的操作可见;在其后面的操作肯定还没有进行;

x = 2;      //语句1
y = 0;     //语句2 
flag = true; //语句3 
x = 4; //语句4
y = -1;     //语句5

由于flag变量为volatile变量,那么在进行指令重排序的过程的时候,不会将语句3放到语句1、语句2前 面,也不会讲语句3放到语句4、语句5后面。但是要注意语句1和语句2的顺序、语句4和语句5的顺序是 不作任何保证的。

使用 Volatile 一般用于 状态标记量 和 单例模式的双检锁

Thread 类中的start() 和 run() 方法有什么区别?

start()方法被用来启动新创建的线程,而且start()内部调用了run()方法,这和直接调用run()方法的效果 不一样。当你调用run()方法的时候,只会是在原来的线程中调用,没有新的线程启动,start()方法才会 启动新线程。

为什么wait, notify 和 notifyAll这些方法不在thread类里面?

明显的原因是JAVA提供的锁是对象级的而不是线程级的,每个对象都有锁,通过线程获得。如果线程需要等待某些锁那么调用对象中的wait()方法就有意义了。如果wait()方法定义在Thread类中,线程正在 等待的是哪个锁就不明显了。简单的说,由于wait,notify和notifyAll都是锁级别的操作,所以把他们定义在Object类中因为锁属于对象。

为什么wait和notify方法要在同步块中调用?

  1. 只有在调用线程拥有某个对象的独占锁时,才能够调用该对象的wait(),notify()和notifyAll()方法。

  2. 如果你不这么做,你的代码会抛出IllegalMonitorStateException异常。

  3. 还有一个原因是为了避免wait和notify之间产生竞态条件。

wait()方法强制当前线程释放对象锁。这意味着在调用某对象的wait()方法之前,当前线程必须已经获得 该对象的锁。因此,线程必须在某个对象的同步方法或同步代码块中才能调用该对象的wait()方法。

在调用对象的notify()和notifyAll()方法之前,调用线程必须已经得到该对象的锁。因此,必须在某个对 象的同步方法或同步代码块中才能调用该对象的notify()或notifyAll()方法。

调用wait()方法的原因通常是,调用线程希望某个特殊的状态(或变量)被设置之后再继续执行。调用notify()或notifyAll()方法的原因通常是,调用线程希望告诉其他等待中的线程:"特殊状态已经被设置"。 这个状态作为线程间通信的通道,它必须是一个可变的共享状态(或变量)。

Java中interrupted 和 isInterruptedd方法的区别?

interrupted() 和 isInterrupted()的主要区别是前者会将中断状态清除而后者不会。Java多线程的中断机制是用内部标识来实现的,调用Thread.interrupt()来中断一个线程就会设置中断标识为true。当中断线 程调用静态方法Thread.interrupted()来检查中断状态时,中断状态会被清零。而非静态方法isInterrupted()用来查询其它线程的中断状态且不会改变中断状态标识。简单的说就是任何抛出InterruptedException异常的方法都会将中断状态清零。无论如何,一个线程的中断状态有有可能被其它线程调用中断来改变。

Java中synchronized 和 ReentrantLock 有什么不同?

相似点:

这两种同步方式有很多相似之处,它们都是加锁方式同步,而且都是阻塞式的同步,也就是说当如果一 个线程获得了对象锁,进入了同步块,其他访问该同步块的线程都必须阻塞在同步块外面等待,而进行 线程阻塞和唤醒的代价是比较高的.

区别:

这两种方式最大区别就是对于Synchronized来说,它是java语言的关键字,是原生语法层面的互斥,需 要jvm实现。而ReentrantLock它是JDK 1.5之后提供的API层面的互斥锁,需要lock()和unlock()方法配合try/finally语句块来完成。

Synchronized进过编译,会在同步块的前后分别形成monitorenter和monitorexit这个两个字节码指令。在执行monitorenter指令时,首先要尝试获取对象锁。如果这个对象没被锁定,或者当前线程已经 拥有了那个对象锁,把锁的计算器加1,相应的,在执行monitorexit指令时会将锁计算器就减1,当计算器为0时,锁就被释放了。如果获取对象锁失败,那当前线程就要阻塞,直到对象锁被另一个线程释 放为止。

由于ReentrantLock是java.util.concurrent包下提供的一套互斥锁,相比Synchronized,

ReentrantLock类提供了一些高级功能,主要有以下3项:

  1. 等待可中断,持有锁的线程长期不释放的时候,正在等待的线程可以选择放弃等待,这相当于Synchronized来说可以避免出现死锁的情况。

  2. 公平锁,多个线程等待同一个锁时,必须按照申请锁的时间顺序获得锁,Synchronized锁非公平锁, ReentrantLock默认的构造函数是创建的非公平锁,可以通过参数true设为公平锁,但公平锁表现的性 能不是很好。

  3. 锁绑定多个条件,一个ReentrantLock对象可以同时绑定对个对象。

有三个线程T1,T2,T3,如何保证顺序执行?

在多线程中有多种方法让线程按特定顺序执行,你可以用线程类的join()方法在一个线程中启动另一个 线程,另外一个线程完成该线程继续执行。为了确保三个线程的顺序你应该先启动最后一个(T3调用T2,T2调用T1),这样T1就会先完成而T3最后完成。

实际上先启动三个线程中哪一个都行,

因为在每个线程的run方法中用join方法限定了三个线程的执行顺序。

SynchronizedMap和ConcurrentHashMap有什么区别?

SynchronizedMap()和Hashtable一样,实现上在调用map所有方法时,都对整个map进行同步。而ConcurrentHashMap的实现却更加精细,它对map中的所有桶加了锁。所以,只要有一个线程访问map,其他线程就无法进入map,而如果一个线程在访问ConcurrentHashMap某个桶时,其他线程, 仍然可以对map执行某些操作。

所以,ConcurrentHashMap在性能以及安全性方面,明显比Collections.synchronizedMap()更加有优势。同时,同步操作精确控制到桶,这样,即使在遍历map时,如果其他线程试图对map进行数据修 改,也不会抛出ConcurrentModificationException。

什么是线程安全

线程安全就是说多线程访问同一代码,不会产生不确定的结果。

在多线程环境中,当各线程不共享数据的时候,即都是私有(private)成员,那么一定是线程安全的。 但这种情况并不多见,在多数情况下需要共享数据,这时就需要进行适当的同步控制了。

线程安全一般都涉及到synchronized, 就是一段代码同时只能有一个线程来操作 不然中间过程可能会产生不可预制的结果。

如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运 行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。

Thread类中的yield方法有什么作用?

Yield方法可以暂停当前正在执行的线程对象,让其它有相同优先级的线程执行。它是一个静态方法而且 只保证当前线程放弃CPU占用而不能保证使其它线程一定能占用CPU,执行yield()的线程有可能在进入 到暂停状态后马上又被执行。

Java线程池中submit() 和 execute()方法有什么区别?

两个方法都可以向线程池提交任务,execute()方法的返回类型是void,它定义在Executor接口中, 而submit()方法可以返回持有计算结果的Future对象,它定义在ExecutorService接口中,它扩展了Executor接口,其它线程池类像ThreadPoolExecutor和ScheduledThreadPoolExecutor都有这些方法。

1) execute() 方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功与否;

2)submit()方法用于提交需要返回值的任务。线程池会返回一个future类型的对象,通过这个future 对象可以判断任务是否执行成功,并且可以通过future的get()方法来获取返回值,get()方法会阻塞当前 线程直到任务完成,而使用 get(long timeout,TimeUnit unit) 方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。

说一说自己对于 synchronized 关键字的了解

synchronized关键字解决的是多个线程之间访问资源的同步性,synchronized关键字可以保证被它修 饰的方法或者代码块在任意时刻只能有一个线程执行。

另外,在 Java 早期版本中,synchronized属于重量级锁,效率低下,因为监视器锁(monitor)是依赖于底层的操作系统的 Mutex Lock 来实现的,Java 的线程是映射到操作系统的原生线程之上的。如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态 转换到内核态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高,这也是为什么早期的synchronized 效率低的原因。庆幸的是在 Java 6 之后 Java 官方对从 JVM 层面对synchronized 较大优化,所以现在的 synchronized 锁效率也优化得很不错了。JDK1.6对锁的实现引入了大量的优化,如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销。

说说自己是怎么使用 synchronized 关键字,在项目中用到了吗synchronized关键字最主要的三种使用方式:

修饰实例方法: 作用于当前对象实例加锁,进入同步代码前要获得当前对象实例的锁

修饰静态方法: 也就是给当前类加锁,会作用于类的所有对象实例,因为静态成员不属于任何一个实例对象,是类成员( static 表明这是该类的一个静态资源,不管new了多少个对象,只有一份)。所以如果一个线程A调用一个实例对象的非静态 synchronized 方法,而线程B需要调用这个实例对象所属类的静态 synchronized 方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的锁,而访问非静态 synchronized 方法占用的锁是当前实例对象锁。

修饰代码块: 指定加锁对象,对给定对象加锁,进入同步代码库前要获得给定对象的锁。

总结: synchronized 关键字加到 static 静态方法和 synchronized(class)代码块上都是是给 Class 类上锁。synchronized 关键字加到实例方法上是给对象实例上锁。尽量不要使用 synchronized(String a) 因为JVM中,字符串常量池具有缓存功能!

什么是线程安全?Vector是一个线程安全类吗?

如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运 行结果和单线程运行的结果是一样的,而且其他的变量 的值也和预期的是一样的,就是线程安全的。一个线程安全的计数器类的同一个实例对象在被多个线程使用的情况下也不会出现计算失误。很显然你可 以将集合类分 成两组,线程安全和非线程安全的。Vector 是用同步方法来实现线程安全的, 而和它相似的ArrayList不是线程安全的。

1 volatile关键字

1. 讲⼀下Java内存模型

在 JDK1.2 之前,Java的内存模型实现总是从主存(即共享内存)读取变量,是不需要进⾏特别的注意的。⽽在当前的 Java 内存模型下,线程可以把变量保存本地内存(⽐如机器的寄存器)中,⽽不是直接在主存中进⾏读写。这就可能造成⼀个线程在主存中修改了⼀个变量的值,⽽另外⼀个线程还继续使

⽤它在寄存器中的变量值的拷⻉,造成数据的不⼀致。

img

要解决这个问题,就需要把变量声明为volatile,这就指示 JVM,这个变量是不稳定的,每次使⽤它都到主存中进⾏读取。

说⽩了, volatile 关键字的主要作⽤就是保证变量的可⻅性然后还有⼀个作⽤是防⽌指令重排序。

img

2 并发编程的三个重要特性

  1. 原⼦性 : ⼀个的操作或者多次操作,要么所有的操作全部都得到执⾏并且不会收到任何因素的⼲扰⽽中断,要么所有的操作都执⾏,要么都不执⾏。 synchronized 可以保证代码⽚段的原⼦性。

  2. 可⻅性 :当⼀个变量对共享变量进⾏了修改,那么另外的线程都是⽴即可以看到修改后的最新值。 volatile 关键字可以保证共享变量的可⻅性。

  3. 有序性 :代码在执⾏的过程中的先后顺序,Java 在编译器以及运⾏期间的优化,代码的执⾏顺

序未必就是编写代码时候的顺序。 volatile 关键字可以禁⽌指令进⾏重排序优化。

3. 说说 synchronized 关键字和 volatile 关键字的区别

synchronized关键字和volatile关键字⽐较

  • volatile关键字是线程同步的轻量级实现,所以volatile性能肯定⽐synchronized关键字要好。但是volatile关键字只能⽤于变量⽽synchronized关键字可以修饰⽅法以及代码块。synchronized关键字在JavaSE1.6之后进⾏了主要包括为了减少获得锁和释放锁带来的性能消耗⽽引⼊的偏向锁和轻量级锁以及其它各种优化之后执⾏效率有了显著提升,实际开发中使⽤synchronized 关键字的场景还是更多⼀些。
  • 多线程访问volatile关键字不会发⽣阻塞,⽽synchronized关键字可能会发⽣阻塞
  • volatile关键字能保证数据的可⻅性,但不能保证数据的原⼦性。synchronized关键字两者都能保证。
  • volatile关键字主要⽤于解决变量在多个线程之间的可⻅性,⽽ synchronized关键字解决的是多个线程之间访问资源的同步性。

volatile关键字的作用?

一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语 义:

  • 保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他 线程来说是立即可见的。
  • 禁止进行指令重排序。
  • synchronized则是锁定当前变量,只有当前线程可以访问该变量,其他线程被阻塞住。
  • volatile仅能使用在变量级别;synchronized则可以使用在变量、方法、和类级别的。

  • volatile仅能实现变量的修改可见性,并不能保证原子性;synchronized则可以保证变量的修改可 见性和原子性。

  • volatile不会造成线程的阻塞;synchronized可能会造成线程的阻塞。

volatile标记的变量不会被编译器优化;synchronized标记的变量可以被编译器优化。

常用的线程池有哪些?

newSingleThreadExecutor:创建一个单线程的线程池,此线程池保证所有任务的执行顺序按照 任务的提交顺序执行。

newFixedThreadPool:创建固定大小的线程池,每次提交一个任务就创建一个线程,直到线程达 到线程池的最大大小。

newCachedThreadPool:创建一个可缓存的线程池,此线程池不会对线程池大小做限制,线程池 大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。newScheduledThreadPool:创建一个大小无限的线程池,此线程池支持定时以及周期性执行任 务的需求。

newSingleThreadExecutor:创建一个单线程的线程池。此线程池支持定时以及周期性执行任务 的需求。

简述一下你对线程池的理解

(如果问到了这样的问题,可以展开的说一下线程池如何用、线程池的好处、线程池的启动策略)合理 利用线程池能够带来三个好处。

第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。 第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。

第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系 统的稳定性,使用线程池可以进行统一的分配,调优和监控。

为什么要用线程池?

池化技术相⽐⼤家已经屡⻅不鲜了,线程池、数据库连接池、Http 连接池等等都是对这个思想的应⽤。池化技术的思想主要是为了减少每次获取资源的消耗,提⾼对资源的利⽤率。

线程池提供了一种限制和管理资源(包括执行一个任务)。 每个线程池还维护一些基本统计信息,例如已完成任务的数量。

这里借用《Java并发编程的艺术》提到的来说一下使用线程池的好处:

  • 降低资源消耗。 通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。 当任务到达时,任务可以不需要的等到线程创建就能立即执行。
  • 提高线程的可管理性。 线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。

如何创建线程池

阿里巴巴Java开发手册》中强制线程池不允许使用 Executors 去创建,而是通过ThreadPoolExecutor 的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险

Executors 返回线程池对象的弊端如下:

  • FixedThreadPool 和 SingleThreadExecutor : 允许请求的队列长度为Integer.MAX_VALUE,可能堆积大量的请求,从而导致OOM。
  • CachedThreadPool 和 ScheduledThreadPool : 允许创建的线程数量为Integer.MAX_VALUE ,可能会创建大量线程,从而导致OOM。

方式一:通过构造方法实现

image-20210502152117735

方式二:通过Executor 框架的工具类Executors来实现 我们可以创建三种类型的ThreadPoolExecutor:

  • FixedThreadPool : 该方法返回一个固定线程数量的线程池。该线程池中的线程数量始终不变。当有一个新的任务提交时,线程池中若有空闲线程,则立即执行。若没有,则新的任务会被暂存在 一个任务队列中,待有线程空闲时,便处理在任务队列中的任务。
  • SingleThreadExecutor: 方法返回一个只有一个线程的线程池。若多余一个任务被提交到该线程池,任务会被保存在一个任务队列中,待线程空闲,按先入先出的顺序执行队列中的任务。
  • CachedThreadPool: 该方法返回一个可根据实际情况调整线程数量的线程池。线程池的线程数量不确定,但若有空闲线程可以复用,则会优先使用可复用的线程。若所有线程均在工作,又有新 的任务提交,则会创建新的线程处理任务。所有线程在当前任务执行完毕后,将返回线程池进行复 用。

对应Executors工具类中的方法如图所示:

img |

ThreadPoolExecutor 类分析

Atomic 原⼦类

AQS

Java程序是如何执行的

我们日常的工作中都使用开发工具(IntelliJ IDEA 或 Eclipse 等)可以很方便的调试程序,或者是通过打包工具把项目打包成 jar 包或者 war 包,放入 Tomcat 等 Web 容器中就可以正常运行了,但你有没有 想过 Java 程序内部是如何执行的?其实不论是在开发工具中运行还是在 Tomcat 中运行,Java 程序的执行流程基本都是相同的,它的执行流程如下:

  • 先把 Java 代码编译成字节码,也就是把 .java 类型的文件编译成 .class 类型的文件。这个过程的大致执行流程:Java 源代码 -> 词法分析器 -> 语法分析器 -> 语义分析器 -> 字符码生成器 -> 最终生成字节码,其中任何一个节点执行失败就会造成编译失败;
  • 把 class 文件放置到 Java 虚拟机,这个虚拟机通常指的是 Oracle 官方自带的 Hotspot JVM
  • Java 虚拟机使用类加载器(Class Loader)装载 class 文件

  • 类加载完成之后,会进行字节码效验,字节码效验通过之后 JVM 解释器会把字节码翻译成机器码交由操作系统执行。但不是所有代码都是解释执行的,JVM 对此做了优化,比如,以 Hotspot 虚拟机来说,它本身提供了 JIT(Just In Time)也就是我们通常所说的动态编译器,它能够在运行时将热点代码编译为机器码,这个时候字节码就变成了编译执行。Java 程序执行流程图如下:

image-20210502151206571

讲一下 synchronized 关键字的底层原理

synchronized 关键字底层原理属于 JVM 层面。

① synchronized 同步语句块的情况

public class SynchronizedDemo { public void method() {
    synchronized (this) { 
        System.out.println("synchronized 代码块");
        }
    }
}

通过 JDK 自带的 javap 命令查看 SynchronizedDemo 类的相关字节码信息:首先切换到类的对应目录执行 javac SynchronizedDemo.java 命令生成SynchronizedDemo.class文件,然后执行 javap -c -s - v -l SynchronizedDemo.class

image-20210502151600925

从上面我们可以看出:

synchronized 同步语句块的实现使用的是 monitorenter 和 monitorexit 指令,其中monitorenter 指令指向同步代码块的开始位置,monitorexit 指令则指明同步代码块的结束位置。 当执行 monitorenter 指令时,线程试图获取锁也就是获取 monitor(monitor对象存在于每个Java对象的对象头中,synchronized 锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因) 的持有权.当计数器为0则可以成功获取,获取后将锁计数器设为1也就是加1。相应的在执行monitorexit 指令后,将锁计数器设为0,表明锁被释放。如果获取对象锁失败,那当前线程就要阻塞等待,直到锁被另外一个线程释放为止。

② synchronized 修饰方法的的情况

public class SynchronizedDemo2 { 
    public synchronized void method() {
        System.out.println("synchronized 方法");
    }
}

image-20210502151630773

synchronized 修饰的方法并没有 monitorenter 指令和 monitorexit 指令,取得代之的确实是ACC_SYNCHRONIZED 标识,该标识指明了该方法是一个同步方法,JVM 通过该 ACC_SYNCHRONIZED 访问标志来辨别一个方法是否声明为同步方法,从而执行相应的同步调用。

说说 JDK1.6 之后的synchronized 关键字底层做了哪些优化,可以详细介绍⼀下这些优化吗

JDK1.6 对锁的实现引⼊了⼤量的优化,如偏向锁、轻量级锁、⾃旋锁、适应性⾃旋锁、锁消除、锁粗化等技术来减少锁操作的开销。

锁主要存在四种状态,依次是:⽆锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,他们会随着竞 争的激烈⽽逐渐升级。注意锁可以升级不可降级,这种策略是为了提⾼获得锁和释放锁的效率。

谈谈 synchronized和ReentrantLock 的区别

① 两者都是可重⼊锁

两者都是可重⼊锁。“可重⼊锁”概念是:⾃⼰可以再次获取⾃⼰的内部锁。⽐如⼀个线程获得了某个对 象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁的时候还是可以获取的,如果不 可锁重⼊的话,就会造成死锁。同⼀个线程每次获取锁,锁的计数器都⾃增1,所以要等到锁的计数器 下降为0时才能释放锁。

② synchronized 依赖于 JVM ⽽ ReentrantLock 依赖于 API

synchronized 是依赖于 JVM 实现的,前⾯我们也讲到了 虚拟机团队在 JDK1.6 为 synchronized 关键字进⾏了很多优化,但是这些优化都是在虚拟机层⾯实现的,并没有直接暴露给我们。ReentrantLock 是 JDK 层⾯实现的(也就是 API 层⾯,需要 lock() 和 unlock() ⽅法配合try/finally 语句块来完成),所以我们可以通过查看它的源代码,来看它是如何实现的。

③ ReentrantLock ⽐ synchronized 增加了⼀些⾼级功能

相⽐synchronized,ReentrantLock增加了⼀些⾼级功能。主要来说主要有三点:①等待可中断;②可实现公平锁;③可实现选择性通知(锁可以绑定多个条件)

  • ReentrantLock提供了⼀种能够中断等待锁的线程的机制,通过lock.lockInterruptibly()来实现这个机制。也就是说正在等待的线程可以选择放弃等待,改为处理其他事情
  • ReentrantLock**可以指定是公平锁还是⾮公平锁。⽽synchronized只能是⾮公平锁。所谓的公平锁就是先等待的线程先获得锁。 ReentrantLock默认情况是⾮公平的,可以通过 ReentrantLock 类的ReentrantLock(boolean fair) 构造⽅法来制定是否是公平的。
  • synchronized关键字与wait()和notify()/notifyAll()⽅法相结合可以实现等待/通知机制, ReentrantLock类当然也可以实现,但是需要借助于Condition接⼝与newCondition() ⽅法。Condition是JDK1.5之后才有的,它具有很好的灵活性,⽐如可以实现多路通知功能也就是在⼀个Lock对象中可以创建多个Condition实例(即对象监视器),线程对象可以注册在指定的Condition中,从⽽可以有选择性的进⾏线程通知,在调度线程上更加灵活。 在使⽤notify()/notifyAll()⽅法进⾏通知时,被通知的线程是由 JVM 选择的,⽤ReentrantLock类结合Condition实例可以实现“选择性通知” ,这个功能⾮常重要,⽽且是Condition接⼝默认提供的。⽽synchronized关键字就相当于整个Lock对象中只有⼀个Condition实例,所有的线程都注册在它⼀个身上。如果执⾏notifyAll()⽅法的话就会通知所有处于等待状态的线程这样会造成 很⼤的效率问题,⽽Condition实例的signalAll()⽅法 只会唤醒注册在该Condition实例中的所有等待线程。

如果你想使⽤上述功能,那么选择ReentrantLock是⼀个不错的选择。

④ 性能已不是选择标准

ThreadLocal

ThreadLocal简介

通常情况下,我们创建的变量是可以被任何⼀个线程访问并修改的。如果想实现每⼀个线程都有⾃⼰的 专属本地变量该如何解决呢? JDK中提供的 ThreadLocal 类正是为了解决这样的问题。ThreadLocal 类主要解决的就是让每个线程绑定⾃⼰的值,可以将 ThreadLocal 类形象的⽐喻成存放数据的盒⼦,盒⼦中可以存储每个线程的私有数据。

如果你创建了⼀个 ThreadLocal 变量,那么访问这个变量的每个线程都会有这个变量的本地副本,这也是 ThreadLocal 变量名的由来。他们可以使⽤get() 和set()⽅法来获取默认值或将其值更改为当前线程所存的副本的值,从⽽避免了线程安全问题。

再举个简单的例⼦:

⽐如有两个⼈去宝屋收集宝物,这两个共⽤⼀个袋⼦的话肯定会产⽣争执,但是给他们两个⼈每个⼈分 配⼀个袋⼦的话就不会出现这样的问题。如果把这两个⼈⽐作线程的话,那么ThreadLocal就是⽤来避免这两个线程竞争的。

ThreadLocal原理

ThreadLocal 内存泄露问题

results matching ""

    No results matching ""